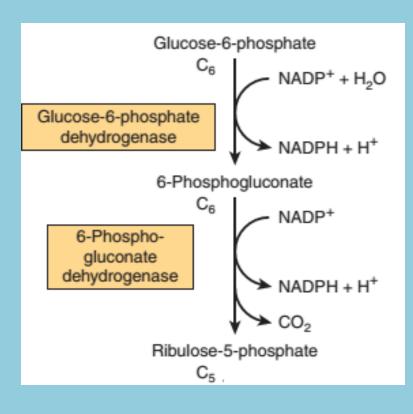
Pentose Phosphate Pathway

Dr. Deepak K Gupta

Introduction


- Alternative route for the metabolism of glucose
- Also known as Hexose Monophosphate (HMP) shunt
- More complex pathway than glycolysis
- It helps in
 - formation of NADPH for synthesis of fatty acids, steroids,
 - maintaining reduced glutathione for antioxidant activity
 - synthesis of ribose for nucleotide and nucleic acid formation

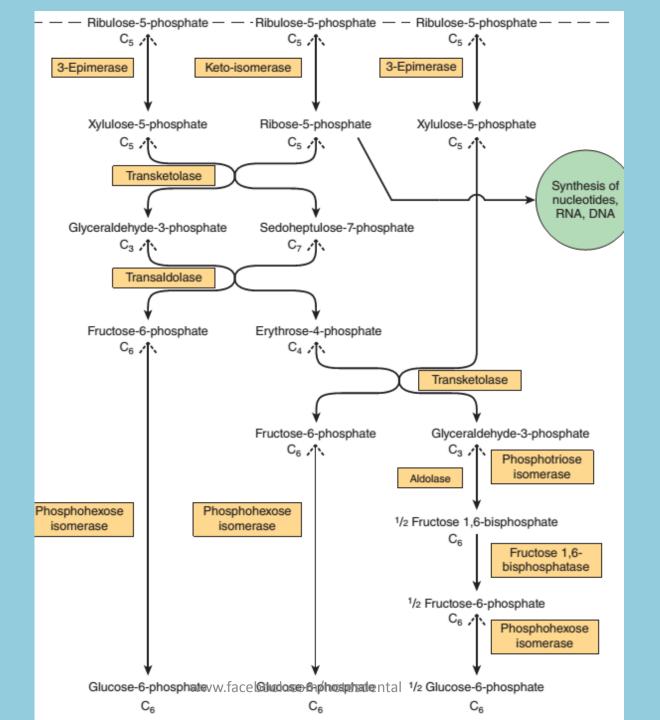
Pentose Phosphate Pathway

- Like glycolysis it occurs in cytosol
- Oxidation is achieved by dehydrogenation using NADP+, not NAD+
- Its carried out in 2 step:
 - Irreversible oxidative phase: 3 molecules of glucose-6-phosphate give rise to 3 molecules of CO₂ and 3 5-carbon sugars.
 - Reversible nonoxidative phase: Rearranged to regenerate 2 molecules of glucose-6 phosphate and 1 molecule of the glyceraldehyde-3 phosphate

Oxidative phase

- Dehydrogenation of glucose-6phosphate to 6phosphogluconate catalyzed by glucose 6-phosphate dehydrogenase
- Followed by hydrolysis of
 6- phosphogluconolactone to
 Ribulose-5-phosphate catalyzed
 by 6-phosphogluconate
 dehydrogenase
- Decarboxylation follows with the formation of the ketopentose ribulose-5phosphate
- Both this step requires NADP⁺ as hydrogen acceptor www.facebook.com/notesdental

Non-oxidative Phase


- Ribulose-5-phosphate is the substrate for two enzymes
 - Ribose-5-phosphate ketoisomerase: ribulose 5phosphate to the corresponding ribose-5phosphate - used for nucleotide and nucleic acid synthesis
 - Ribulose-5-phosphate 3-epimerase: alters the configuration about carbon giving xylulose 5-phosphate

Non-oxidative Phase

- Xylulose-5-phosphate (5c) and Ribose-5-phosphate (5c) reacts to give Glyceraldehyde-3-phosphate (3c) and Sedoheptulose-7-phosphate (7c) by the enzyme Transketolase
- Glyceraldehyde-3-phosphate (3c) and Sedoheptulose-7-phosphate (7c) is acted by Transaldolase to give Fructose-6-phosphate and Erythrose-4-phosphate

Non-oxidative Phase

- Erythrose-4-phosphate and Xylulose-5-phosphate reacts in the presence of enzyme Transketolase to give Fructose-6-phosphate and Glyceraldehyde-3-phosphate
 - Mg²⁺ and thiamin diphosphate (vitamin B1) as coenzyme
- Subsequently Fructose-6 –phosphate is isomerised to Glucose-6-phosphate by enzyme Phosphohexose isomerase
- Glyceraldehyde-3-phosphate reversal of glycolysis and the gluconeogenic enzyme fructose 1,6 bisphosphatase or it proceeds to glycolysis.

Importance of NADPH

- Bio-synthesis of Fatty acid
- Certain amino acid involving the enzyme glutamate dehydrogenase
- Antioxidant reaction Glutathione mediated reaction of H_2O_2
- Detoxification of drugs cytochrome P450
- Phagocytosis
- Integrity of RBC membrane

Importance of Pentose Sugar

- Ribose-5 phosphate useful for the synthesis of nucleic acid (RNA and DNA) and nucleotide
- Skeletal muscles capable of synthesizing pentoses

CLINICAL ASPECTS

- Genetic defects of glucose-6-phosphate dehydrogenase
- impairment of the generation of NADPH X chromosome
- Mediterranean and Afro-Caribbean origin
- red cell hemolysis (hemolytic anemia)
- subjected to oxidative stress
 - Infection
 - Drugs such as the antimalarial primaquine, and sulfonamides
 - Fava beans favism

References

- Harper's Illustrated Biochemistry, 30E (2015)
- Biochemistry U. Satyanarayan and U. Chakrapani
 3rd edition
- Lehninger Principles of Biochemistry, Fourth Edition - David L. Nelson, Michael M. Cox
- Biochemistry Garrett And Grisham 2nd Ed 1998
- Biochemistry Stryer 5th Edition repost
- Color Atlas of Biochemistry 2005